Characterization of Ribonuclease Activity of Three S-Allele-Associated Proteins of Petunia inflata.
نویسندگان
چکیده
Three S-allele-associated proteins (S-proteins) of Petunia inflata, a species with gametophytic self-incompatibility, were previously found to share sequence similarity with two fungal ribonucleases, RNase T(2) and RNase Rh. In this study, the S-proteins from P. inflata plants of S(1)S(2) and S(2)S(3) genotypes were purified to homogeneity by gel filtration and cation-exchange chromatography, and their enzymatic properties were characterized. The three S-proteins (S(1), S(2), and S(3)), with pairwise sequence identity ranging from 73.1 to 80.5%, were similar in most of the enzymatic properties characterized. The ribonuclease activity had a pH optimum of 7.0 and a temperature optimum of 50 degrees C. Diethylpyrocarbonate at 1 millimolar almost completely abolished the ribonuclease activity; cupric sulfate and zinc sulfate at 1 millimolar reduced the ribonuclease activity of the three S-proteins by 50 to 75%. EDTA and RNasin had no inhibitory effect. All three S-proteins hydrolyzed polycytidylic acid preferentially, but varied in their nucleolytic activity toward polyadenylic acid and polyuridylic acid.
منابع مشابه
Petunia nectar proteins have ribonuclease activity
Plants requiring an insect pollinator often produce nectar as a reward for the pollinator's visitations. This rich secretion needs mechanisms to inhibit microbial growth. In Nicotiana spp. nectar, anti-microbial activity is due to the production of hydrogen peroxide. In a close relative, Petunia hybrida, limited production of hydrogen peroxide was found; yet petunia nectar still has anti-bacter...
متن کاملIdentification and characterization of components of a putative petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility.
Petunia inflata S-locus F-box (Pi SLF) is thought to function as a typical F-box protein in ubiquitin-mediated protein degradation and, along with Skp1, Cullin-1, and Rbx1, could compose an SCF complex mediating the degradation of nonself S-RNase but not self S-RNase. We isolated three P. inflata Skp1s (Pi SK1, -2, and -3), two Cullin-1s (Pi CUL1-C and -G), and an Rbx1 (Pi RBX1) cDNAs and found...
متن کاملStable two-element control of dTph1 transposition in mutator strains of Petunia by an inactive ACT1 introgression from a wild species.
The high copy dTph1 transposon system of Petunia (Solanaceae) is one of the most powerful insertion mutagens in plants, but its activity cannot be controlled in the commonly used mutator strains. We analysed the regulation of dTph1 activity by QTL analysis in recombinant inbred lines of the mutator strain W138 and a wild species (P. integrifolia spp. inflata). Two genetic factors were identifie...
متن کاملEvidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata.
For Solanaceae type self-incompatibility, discrimination between self and nonself pollen by the pistil is controlled by the highly polymorphic S-RNase gene. To date, the mechanism generating the allelic diversity of this gene is largely unknown. Natural populations offer a good opportunity to address this question because they likely contain different alleles that share recent common progenitor...
متن کاملThe amino terminal F-box domain of Petunia inflata S-locus F-box protein is involved in the S-RNase-based self-incompatibility mechanism
BACKGROUND AND AIMS Pistils of flowering plants possessing self-incompatibility (SI) can distinguish between self and non-self pollen, and only allow non-self pollen to effect fertilization. For Petunia inflata, the S-RNase gene encodes pistil specificity and multiple S-locus F-box (SLF) genes encode pollen specificity. Each SLF produced in pollen interacts with a subset of non-self S-RNases to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 96 1 شماره
صفحات -
تاریخ انتشار 1991